IT Reviews
You can see all about IT in here

DUALCORE

By Unknown
PENGERTIAN
• Maksud dari processor dual core adalah processor yang mempunyai 2 inti di dalam satu die (silicon processor).
• Processor berbasis 64 bit dan disebut dual core karena menggunakan 2 buah inti, dengan konfigurasi 1MB L2 cache pada tiap core, 800MHz FSB, dan bisa beroperasi pada frekuensi 2.8GHz, 3.0GHz, dan 3.2GHz. Pada processor jenis ini juga disertakan dukungan HyperThreading.
KEUNGGULAN DUALCORE
• Kelebihan dari dual core sendiri adalah, secara teknis dia dapat melakukan dua perintah atau eksekusi dalam satu clock.
• Keuntungan dual core terutama pada cache coherency. Dengan dual core, komunikasi antara kedua die dapat dilakukan pada clock rate yang lebih tinggi dibandingkan jika memanfaatkan bus di luar chip.
KELEMAHAN DUALCORE
• Namun, di balik kelebihannnya tersebut, dual core bukan tanpa kekurangan. Di antara kekurangan itu misalnya membutuhkan operating system (OS) yang mampu mengoptimalkan kinerjanya. Setidaknya kemampuan OS untuk mengoptimalkan SMP (symmetric multi-processing). Selain itu, dibutuhkan juga aplikasi yang sudah mendukung pengoptimalan prosesor ini.
• Secara teknis pun dapat dikatakan, dual core sebenarnya tidak akan membuat detak komputer (clock speed) jadi lebih cepat daripada prosesor single core yang mempunyai clock speed tinggi. Dual core hanya akan meningkatkan operasional pengguna PC saja.
• Selain itu, masih ada masalah lisensi untuk beberapa software dan sistem operasi. Terutama untuk kebutuhan perusahaan. Lalu akankah PC dengan dual core processor ini akan terhitung sebagai PC dengan multi processor? Ataukah masih dapat menggunakan lisensi single processor?.
DUALCORE DARI INTEL
• Prosesor dual core dari Intel untuk desktop diluncurkan dengan nama kode Smithfield yang memiliki kecepatan 3.2 GHz dengan masing-masing core dilengkapi dengan L2 cache sebesar 1 MB. Chip yang dinamai Pentium D tersebut memiliki kecepatan clock jauh lebih rendah dari CPU core tunggal 3.8 GHz, seperti seri 570 dan 670.
• Untuk itu, pada Intel Pentium D juga dilakukan peningkatan branch prediction unit. Dengan memperbaiki kinerja branch prediction unit, akan membuat prosesor dapat bekerja secara optimal dan memperkecil kemungkinan kesalahan.
SPESIFIKASI DUAL CORE YANG DITELITI

• External hardware Broadcom 5751*2
Realtek ALC882M
6*Serial ATA II, 3*PATA
Silicon Image Sil3132 SATA II controller
GigaRAID ITE8212 IDE RAID controller IEEE1938 1394b

Internal I/O Connectors : 1 x U-Plus D.P.S connector
6 x Serial ATA II 3.0Gb/s connectors
1 x UDMA ATA 100/66/33 connectors
2 x UDMA ATA 133/100/66 connectors
1 x FDD connector
2 x IEEE1394b connectors (supports 3 ports)
2 x USB 2.0/1.1 connector (supports 4 ports)
3 x Cooling fan pin headers
1 x Game/Midi connector
Blue Toothr
 

CACHE, SOUTHBRIDGE & NORTHBRIDGE

By Unknown
Cache, Southbridge & Northbridge
Cache L1 & L2
Menurut sejarahnya, intel pertama kali mengeluarkan prosesor berinti 2 pada bulan May 2005, yang ia beri nama Pentium D. Pentium D ini adalah lanjutan dari Pentium 4. Arsitektur prosesor ini menggunakan NetBurst microarchitecture. Clock speed prosesor ini berkisar antara 2,6 hingga 3,6 Ghz dengan bus sebesar 800Mhz. Code namenya adalah Smithfield (generasi 1 dengan 90nm) dan Presler(generasi 2 dengan 65nm). List jenis Pentium D ini bisa dilihat di sini. Kelemahan prosesor ini adalah setiap inti berdiri sendiri dengan cache nya masing-masing, sehingga antara inti satu dengan inti yang lain tidak bisa bekerja sama. Selain itu prosesor ini di klaim user sebagai seri pentium yang paling boros listrik. (100watt untuk prosesor saja)
Keluarga CPU Intel yang memiliki arsitektur dual-core. Beberapa seri yang sudah tersedia, di antaranya Pentium D 840, 830, dan 820 yang memiliki clock dari 2,80 sampai 3,20 GHz dengan FSB 800 MHz. Dengan L2 cache yang dimilikinya 2x1 Mb. Dengan dual-core, diharapkan mampu melakukan pemrosesan data dengan waktu yang lebih singkat. Selain itu, processor ini telah dilengkapi dengan EMT64T (Extended Memory 64 Technology) yang mendukung operating system dan aplikasi 64-bit.
Dual Core E2140Conroe 1,6 GHz, FSB 800MHz, Prosesor generasi 65nm, L2 Cache 1024kb.
• dual core memiliki L2 2MB sampai 4MBYorkfield terbaru dari base Penryn memiliki L2 6MB X 2 atau 12MBSedangkan Bloomfield dan gainstown dari base Nehalem belum memiliki kejelasan dari kapasitas L2, mungkin sekitar 8MB.
• Pentium dualcore untuk notebook sebenarnya adalah Intel Core Duo (Yonah) yang dipotong L2 cachenya manjadi 1MB dan memakai FSB 533MHz. (cek list here). Sedangkan pentium dualcore untuk Desktop adalah Allendale yang dipotong L2 cachenya menjadi 1MB dan hanya memakai FSB 800MHz (serinya E2xxx).

Southbridge & Northbridge
· SOUTHBRIDGE Di bawah heatsink itu terdapat chipset southbridge yang berfungsi untuk melakukan pengaturan terhadap input dan output beberapa komponen seperti harddisk, optical drive, USB ports, dan slot tambahan PCI Express. Seiring dengan banyaknya tuntutan proses yang harus dilakukan, maka kini chipset ini dilengkapi dengan heatsink agar lebih stabil.

· NORTHBRIDGE Chipset yang terdapat di bawah heatsink yang dilengkapi kipas ini bekerja sama dengan chipset southbridge untuk melakukan pengaturan terhadap video card, processor, dan memory. Pada chipset ini memiliki beberapa fitur baru yang mampu memberikan port kecepatan tinggi untuk koneksi LAN dan tambahan ekstra PCI Express.

· Perkembangan tehnologi terus menghadirkan chipset-chipset baru, dan biasanya yang ditawarkan chipset-chipset baru itu adalah penambahan fungsi dan dukungan terhadap hardware yang baru. Contohnya saja beda Chipset intel i915 dengan i945 hanya pada dukungan jenis prosesor, tipe memori dan jumlah PCI 1x ; i915 bisa DDR1/DDR2, PCI 4 buah, dan hanya mensupport Pentium4, sedangkan chipset i945 hanya bisa DDR2, PCI 1x berjumlah 6 buah dan mensupport Pentium4 dan PentiumD.

• prosesor: Intel Pentium D 2,66 Dual Corechipset: southbridge VIA PT880 ProNorthbridge VIA VT8237
• Chipset
Intel® chipset - Northbridge: Intel® P35 Express chipset (with Intel® Fast Memory Access technology) - Southbridge: Intel® ICH9R
• Duo/Pentium® Extreme/Pentium® DNorthbridge Chipset NVIDIA nForce 680i SLI MCPSouthbridge Chipset Data Not Available
 

STRUKTUR RAID & IMPLEMENTASINYA

By Unknown
1. Sejarah
Pada tahun 1978, Norman Ken Ouchi dari International Business Machines (IBM) dianugerahi paten Amerika Serikat, dengan nomor 4092732 dengan judul "System for recovering data stored in failed memory unit." Klaim untuk paten ini menjelaskan mengenai apa yang kemudian dikenal sebagai RAID 5 dengan penulisan stripe secara penuh. Patennya pada tahun 1978 tersebut juga menyebutkan bahwa disk mirroring atau duplexing (yang kini dikenal sebagai RAID 1) dan juga perlindungan dengan paritas khusus yang didedikasikan (yang kini dikenal dengan RAID 4) bisa digunakan, meskipun saat itu belum ada implementasinya.
Istilah "RAID" pertama kali didefinisikan oleh David A. Patterson, Garth A. Gibson dan Randy Katz dari University of California, Berkeley, Amerika Serikat pada tahun 1987, 9 tahun berselang setelah paten yang dimiliki oleh Norman Ken Ouchi. Mereka bertiga mempelajari tentang kemungkinan penggunaan dua hard disk atau lebih agar terlihat sebagai sebuah perangat tunggal oleh sistem yang menggunakannya, dan kemudian mereka mempublikasikannya ke dalam bentuk sebuah paper berjudul "A Case for Redundant Arrays of Inexpensive Disks (RAID)" pada bulan Juni 1988 pada saat konferensi SIGMOD. Spesifikasi tersebut menyodorkan beberapa purwarupa RAID level, atau kombinasi dari drive-drive tersebut. Setiap RAID level tersebut secara teoritis memiliki kelebihan dan juga kekurangannya masing-masing. Satu tahun berselang, implementasi RAID pun mulai banyak muncul ke permukaan. Sebagian besar implementasi tersebut memang secara substansial berbeda dengan RAID level yang asli yang dibuat oleh Patterson dan kawan-kawan, tapi implementasi tersebut menggunakan nomor yang sama dengan apa yang ditulis oleh Patterson. Hal ini bisa jadi membingungkan, sebagai contoh salah satu implementasi RAID 5 dapat berbeda dari implementasi RAID 5 yang lainnya. RAID 3 dan RAID 4 juga bisa membingungkan dan sering dipertukarkan, meski pada dasarnya kedua jenis RAID tersebut berbeda.
Patterson menulis lima buah RAID level di dalam papernya, pada bagian 7 hingga 11, dengan membagi ke dalam beberapa level, sebagai berikut:
RAID level pertama: mirroring
RAID level kedua : Koreksi kesalahan dengan menggunakan kode Humming
RAID level ketiga : Pengecekan terhadap disk tunggal di dalam sebuah kelompok disk.
RAID level keempat: Pembacaan dan penulisan secara independen
RAID level kelima : Menyebarkan data dan paritas ke semua drive (tidak ada pengecekan terhadap disk tunggal)

2. Pengertian
RAID, singkatan dari Redundant Array of Independent Disks merujuk kepada sebuah teknologi di dalam penyimpanan data komputer yang digunakan untuk mengimplementasikan fitur toleransi kesalahan pada media penyimpanan komputer (utamanya adalah hard disk) dengan menggunakan cara redundansi (penumpukan) data, baik itu dengan menggunakan perangkat lunak, maupun unit perangkat keras RAID terpisah. Kata "RAID" juga memiliki beberapa singkatan Redundant Array of Inexpensive Disks, Redundant Array of Independent Drives, dan juga Redundant Array of Inexpensive Drives. Teknologi ini membagi atau mereplikasi data ke dalam beberapa hard disk terpisah. RAID didesain untuk meningkatkan keandalan data dan/atau meningkatkan kinerja I/O dari hard disk.
Sejak pertama kali diperkenalkan, RAID dibagi ke dalam beberapa skema, yang disebut dengan "RAID Level". Pada awalnya, ada lima buah RAID level yang pertama kali dikonsepkan, tetapi seiring dengan waktu, level-level tersebut berevolusi, yakni dengan menggabungkan beberapa level yang berbeda dan juga mengimplementasikan beberapa level proprietary yang tidak menjadi standar RAID.
RAID menggabungkan beberapa hard disk fisik ke dalam sebuah unit logis penyimpanan, dengan menggunakan perangkat lunak atau perangkat keras khusus. Solusi perangkat keras umumnya didesain untuk mendukung penggunaan beberapa hard disk secara sekaligus, dan sistem operasi tidak perlu mengetahui bagaimana cara kerja skema RAID tersebut. Sementara itu, solusi perangkat lunak umumnya diimplementasikan di dalam level sistem operasi, dan tentu saja menjadikan beberapa hard disk menjadi sebuah kesatuan logis yang digunakan untuk melakukan penyimpanan.

3. Konsep
Ada beberapa konsep kunci di dalam RAID: mirroring (penyalinan data ke lebih dari satu buah hard disk), striping (pemecahan data ke beberapa hard disk) dan juga koreksi kesalahan, di mana redundansi data disimpan untuk mengizinkan kesalahan dan masalah untuk dapat dideteksi dan mungkin dikoreksi (lebih umum disebut sebagai teknik fault tolerance/toleransi kesalahan).
Level-level RAID yang berbeda tersebut menggunakan salah satu atau beberapa teknik yang disebutkan di atas, tergantung dari kebutuhan sistem. Tujuan utama penggunaan RAID adalah untuk meningkatkan keandalan/reliabilitas yang sangat penting untuk melindungi informasi yang sangat kritis untuk beberapa lahan bisnis, seperti halnya basis data, atau bahkan meningkatkan kinerja, yang sangat penting untuk beberapa pekerjaan, seperti halnya untuk menyajikan video on demand ke banyak penonton secara sekaligus.
Konfigurasi RAID yang berbeda-beda akan memiliki pengaruh yang berbeda pula pada keandalan dan juga kinerja. Masalah yang mungkin terjadi saat menggunakan banyak disk adalah salah satunya akan mengalami kesalahan, tapi dengan menggunakan teknik pengecekan kesalahan, sistem komputer secara keseluruhan dibuat lebih andal dengan melakukan reparasi terhadap kesalahan tersebut dan akhirnya "selamat" dari kerusakan yang fatal.
Teknik mirroring dapat meningkatkan proses pembacaan data mengingat sebuah sistem yang menggunakannya mampu membaca data dari dua disk atau lebih, tapi saat untuk menulis kinerjanya akan lebih buruk, karena memang data yang sama akan dituliskan pada beberapa hard disk yang tergabung ke dalam larik tersebut. Teknik striping, bisa meningkatkan performa, yang mengizinkan sekumpulan data dibaca dari beberapa hard disk secara sekaligus pada satu waktu, akan tetapi bila satu hard disk mengalami kegagalan, maka keseluruhan hard disk akan mengalami inkonsistensi. Teknik pengecekan sesalahan juga pada umumnya akan menurunkan kinerja sistem, karena data harus dibaca dari beberapa tempat dan juga harus dibandingkan dengan checksum yang ada. Maka, desain sistem RAID harus mempertimbangkan kebutuhan sistem secara keseluruhan, sehingga perencanaan dan pengetahuan yang baik dari seorang administrator jaringan sangatlah dibutuhkan. Larik-larik RAID modern umumnya menyediakan fasilitas bagi para penggunanya untuk memilih konfigurasi yang diinginkan dan tentunya sesuai dengan kebutuhan.
Beberapa sistem RAID dapat didesain untuk terus berjalan, meskipun terjadi kegagalan. Beberapa hard disk yang mengalami kegagalan tersebut dapat diganti saat sistem menyala (hot-swap) dan data dapat diperbaiki secara otomatis. Sistem lainnya mungkin mengharuskan shutdown ketika data sedang diperbaiki. Karenanya, RAID sering digunakan dalam sistem-sistem yang harus selalu on-line, yang selalu tersedia (highly available), dengan waktu down-time yang, sebisa mungkin, hanya beberapa saat saja.
Pada umumnya, RAID diimplementasikan di dalam komputer server, tapi bisa juga digunakan di dalam workstation. Penggunaan di dalam workstation umumnya digunakan dalam komputer yang digunakan untuk melakukan beberapa pekerjaan seperti melakukan penyuntingan video/audio.

4. Struktur RAID
Disk memiliki resiko untuk mengalami kerusakan. Kerusakan ini dapat berakibat turunnya kinerja atau pun hilangnya data. Meski pun terdapat backup data, tetap saja ada kemungkinan data yang hilang karena adanya perubahan setelah terakhir kali data di-backup. Karenanya reliabilitas dari suatu disk harus dapat terus ditingkatkan.
Berbagai macam cara dilakukan untuk meningkatkan kinerja dan juga reliabilitas dari disk. Biasanya untuk meningkatkan kinerja, dilibatkan banyak disk sebagai satu unit penyimpanan. Tiap-tiap blok data dipecah ke dalam beberapa subblok, dan dibagi-bagi ke dalam disk-disk tersebut. Ketika mengirim data disk-disk tersebut bekerja secara paralel, sehingga dapat meningkatkan kecepatan transfer dalam membaca atau menulis data. Ditambah dengan sinkronisasi pada rotasi masing- masing disk, maka kinerja dari disk dapat ditingkatkan. Cara ini dikenal sebagai RAID - Redundant Array of Independent (atau Inexpensive) Disks. Selain masalah kinerja RAID juga dapat meningkatkan realibilitas dari disk dengan jalan melakukan redundansi data.
Tiga karakteristik umum dari RAID ini, yaitu :
1. Menurut Stallings, RAID adalah sebuah sebuah set dari beberapa physical drive yang dipandang oleh sistem operasi sebagai sebuah logical drive.
2. Data didistribusikan ke dalam array dari beberapa physical drive.
3. Kapasitas disk yang berlebih digunakan untuk menyimpan informasi paritas , yang menjamin data dapat diperbaiki jika terjadi kegagalan pada salah satu disk.
5. Peningkatan Kehandalan dan Kinerja
Peningkatan Kehandalan dan Kinerja dari disk dapat dicapai melalui 2 cara :
Redundansi
Peningkatan Kehandalan disk dapat dilakukan dengan redundansi, yaitu menyimpan informasi tambahan yang dapat dipakai untuk membentuk kembali informasi yang hilang jika suatu disk mengalami kegagalan. Salah satu teknik untuk redundansi ini adalah dengan cara mirroring atau shadowing , yaitu dengan membuat duplikasi dari tiap-tiap disk. Jadi, sebuah disk logical terdiri dari 2 disk physical, dan setiap penulisan dilakukan pada kedua disk, sehingga jika salah satu disk gagal, data masih dapat diambil dari disk yang lainnya, kecuali jika disk kedua gagal sebelum kegagalan pada disk pertama diperbaiki. Pada cara ini, berarti diperlukan media penyimpanan yang dua kali lebih besar daripada ukuran data sebenarnya. Akan tetapi, dengan cara ini pengaksesan disk yang dilakukan untuk membaca dapat ditingkatkan dua kali lipat. Hal ini dikarenakan setengah dari permintaan membaca dapat dikirim ke masing-masing disk. Cara lain yang digunakan adalah paritas blok interleaved , yaitu menyimpan blok-blok data pada beberapa disk dan blok paritas pada sebuah (atau sebagian kecil) disk.
Paralelisme
Peningkatan kinerja dapat dilakukan dengan mengakses banyak disk secara paralel. Pada disk mirroring, di mana pengaksesan disk untuk membaca data menjadi dua kali lipat karena permintaan dapat dilakukan pada kedua disk, tetapi kecepatan transfer data pada setiap disk tetap sama. Kita dapat meningkatkan kecepatan transfer ini dengan cara melakukan data striping ke dalam beberapa disk. Data striping, yaitu menggunakan sekelompok disk sebagai satu kesatuan unit penyimpanan, menyimpan bit data dari setiap byte secara terpisah pada beberapa disk (paralel).
6. Level RAID
RAID terdiri dapat dibagi menjadi 6 level yang berbeda :
RAID level 0
RAID level 0 menggunakan kumpulan disk dengan striping pada level blok, tanpa redundansi. Jadi hanya menyimpan melakukan striping blok data ke dalam beberapa disk. Level ini sebenarnya tidak termasuk ke dalam kelompok RAID karena tidak menggunakan redundansi untuk peningkatan kinerjanya.
RAID level 1
RAID level 1 ini merupakan disk mirroring, menduplikat setiap disk. Cara ini dapat meningkatkan kinerja disk, tetapi jumlah disk yang dibutuhkan menjadi dua kali lipat, sehingga biayanya menjadi sangat mahal.
RAID level 2
RAID level 2 ini merupakan pengorganisasian dengan error-correcting-code (ECC). Seperti pada memori di mana pendeteksian terjadinya error menggunakan paritas bit. Setiap byte data mempunyai sebuah paritas bit yang bersesuaian yang merepresentasikan jumlah bit di dalam byte data tersebut di mana paritas bit=0 jika jumlah bit genap atau paritas=1 jika ganjil. Jadi, jika salah satu bit pada data berubah, paritas berubah dan tidak sesuai dengan paritas bit yang tersimpan. Dengan demikian, apabila terjadi kegagalan pada salah satu disk, data dapat dibentuk kembali dengan membaca error-correction bit pada disk lain.
RAID level 3
RAID level 3 merupakan pengorganisasian dengan paritas bit interleaved. Pengorganisasian ini hampir sama dengan RAID level 2, perbedaannya adalah RAID level 3 ini hanya memerlukan sebuah disk redundan, berapapun jumlah kumpulan disk-nya. Jadi tidak menggunakan ECC, melainkan hanya menggunakan sebuah bit paritas untuk sekumpulan bit yang mempunyai posisi yang sama pada setiap disk yang berisi data. Selain itu juga menggunakan data striping dan mengakses disk-disk secara paralel.
RAID level 4
RAID level 4 merupakan pengorganisasian dengan paritas blok interleaved, yaitu menggunakan striping data pada level blok, menyimpan sebuah paritas blok pada sebuah disk yang terpisah untuk setiap blok data pada disk-disk lain yang bersesuaian. Jika sebuah disk gagal, blok paritas tersebut dapat digunakan untuk membentuk kembali blok-blok data pada disk yang gagal tadi. Kecepatan transfer untuk membaca data tinggi, karena setiap disk-disk data dapat diakses secara paralel. Demikian juga dengan penulisan, karena disk data dan paritas dapat ditulis secara paralel.
RAID level 5
RAID level 5 merupakan pengorganisasian dengan paritas blok interleaved tersebar. Data dan paritas disebar pada semua disk termasuk sebuah disk tambahan. Pada setiap blok, salah satu dari disk menyimpan paritas dan disk yang lainnya menyimpan data. Sebagai contoh, jika terdapat kumpulan dari 5 disk, paritas blok ke n akan disimpan pada disk (n mod 5) + 1; blok ke n dari empat disk yang lain menyimpan data yang sebenarnya dari blok tersebut. Sebuah paritas blok tidak menyimpan paritas untuk blok data pada disk yang sama, karena kegagalan sebuah disk akan menyebabkan data hilang bersama dengan paritasnya dan data tersebut tidak dapat diperbaiki. Penyebaran paritas pada setiap disk ini menghindari penggunaan berlebihan dari sebuah paritas disk seperti pada RAID level 4.
RAID level 6
RAID level 6 disebut juga redundansi P+Q, seperti RAID level 5, tetapi menyimpan informasi redundan tambahan untuk mengantisipasi kegagalan dari beberapa disk sekaligus. RAID level 6 melakukan dua perhitungan paritas yang berbeda, kemudian disimpan di dalam blok-blok yang terpisah pada disk-disk yang berbeda. Jadi, jika disk data yang digunakan sebanyak n buah disk, maka jumlah disk yang dibutuhkan untuk RAID level 6 ini adalah n+2 disk. Keuntungan dari RAID level 6 ini adalah kehandalan data yang sangat tinggi, karena untuk menyebabkan data hilang, kegagalan harus terjadi pada tiga buah disk dalam interval rata-rata untuk perbaikan data( Mean Time To Repair atau MTTR). Kerugiannya yaitu penalti waktu pada saat penulisan data, karena setiap penulisan yang dilakukan akan mempengaruhi dua buah paritas blok.
RAID level 0+1 dan 1+0
RAID level 0+1 dan 1+0 ini merupakan kombinasi dari RAID level 0 dan 1. RAID level 0 memiliki kinerja yang baik, sedangkan RAID level 1 memiliki kehandalan. Namun, dalam kenyataannya kedua hal ini sama pentingnya. Dalam RAID 0+1, sekumpulan disk di-strip, kemudian strip tersebut di-mirror ke disk-disk yang lain, menghasilkan strip- strip data yang sama. Kombinasi lainnya yaitu RAID 1+0, di mana disk-disk di-mirror secara berpasangan, dan kemudian hasil pasangan mirrornya di-strip. RAID 1+0 ini mempunyai keuntungan lebih dibandingkan dengan RAID 0+1. Sebagai contoh, jika sebuah disk gagal pada RAID 0+1, seluruh strip-nya tidak dapat diakses, hanya sebagian strip saja yang dapat diakses, sedangkan pada RAID 1+0, disk yang gagal tersebut tidak dapat diakses, tetapi pasangan mirror-nya masih dapat diakses, yaitu disk-disk selain dari disk yang gagal.

 

CD/DVD ROM DRIVE

By Unknown
CD/ DVD ROM DRIVE
Perangkat komputer yang berfungsi sebagai pembaca data pada DVD. Perangkat ini memiliki bentuk fisik sama persis seperti CD ROM Drive, akan tetapi memiliki fungsi yang berbeda.

JENIS-JENIS CD/DVD ROM

CD/DVD-ROM
Liteon 16x CD/DVD-ROM
SPESIFIKASI
Plug & Play Compatible
Yes
Operating System
Windows
Drive Interface
ATAPI-E/IDE
Maximum Dvd Read Speed
16X
Maximum Cd Read Speed
48X
Dvd Data Transfer Rate (kb/s)
21600
Cd Data Transfer Rate (kb/s)
7200
Dvd Average Access Time (ms)
120

CDRW

Liteon 52x32X52 CDRW

SPESIFIKASI
Model
Internal
Color
White
Buffer Size
1.5 MB
CD-R Write
52 x
CD-RW Write
32 x
CD Read
52 x
Features
SMART-BURN, SMART-X, VAS®, Mt.Rainier Ready
Package
Box

TYPE CD/DVD ROM YANG LAIN
Manufacturer

Nama Product
AOpen

AOpen CD-RW 52X32X52 + DVD-ROM 16X Combo Drive (Black, OEM)
AOpen

AOpen CD-RW 52x32x52 + DVD-ROM 16x Combo Drive (Multicolor)
AOpen

AOpen CD-RW 52x32x52 Drive (Multicolor)
Sony

LG 52X CD-ROM Drive (Beige, OEM)
Sony

LG 52X CD-ROM Drive (Black, OEM)
LG

LG CD-RW 52x32x52 + DVD 16X Combo Drive (Beige, OEM)
LG

LG CD-RW 52x32x52 + DVD 16X Combo Drive (Black, OEM)
LG

LG CD-RW 52x32x52 Drive (Beige)
LG

LG CD-RW 52x32x52 Drive (Beige, OEM)
LG

LG CD-RW 52x32x52 Drive (Black, OEM)
Lite-On

Lite-On CD-RW 52x32x52 + DVD 16X Combo Drive (Beige)
Lite-On

Lite-On CD-RW 52x32x52 + DVD 16X Combo Drive (Beige, OEM)
Lite-On

Lite-On CD-RW 52x32x52 + DVD 16X Combo Drive (Black, OEM)
Lite-On

Lite-On CD-RW 52x32x52 Drive (Beige)
Lite-On

Lite-On CD-RW 52X32X52 Drive (Black, OEM)
MSI

MSI CD-RW 52X32X52 Drive (Beige)
Sony

Sony 52X CD-ROM Drive (Beige, OEM)
Sony

Sony 52X CD-ROM Drive (Black, OEM)
Sony

Sony CD-RW 52x32x52 + DVD 16X Combo Drive (Black, OEM)
Sony

Sony CD-RW 52x32x52 + DVD 16X Combo Drive (White, OE





Produk – produk opitical disk
· CD Compact Disk. Suatu disk yang tidak dapat dihapus yang menyimpan nformasi audio yang telah didigitasi. Sistem standar menggunakan disk 12 cm yang dapat merekam lebih dari 60 menit waktu putar tanpa terhenti.


· CD - ROM Compact Disk Read-Only Memory. Disk yang tidak dapat dihapus untuk menyimpan data komputer. Sistem standar menggunakan disk 12 cm yang dapat menampung lebih dari 550 Mbyte.
· CD – R Compact Disk Recordables. Merupakan CD untuk penggunaan khusus, biasanya untuk master CD dan photo CD. Lapisan reflektif terbuat dari emas sehingga berwarna kuning. Kapasitas sama dengan CD lainnya.

· CD – RW Digital Video Rewritables. Merupakan generasi CD yang dapat ditulis berulang kali namun belum populer saat ini karena masih relatif mahal.

· DVD Digital Vesatile Disk. Salah satu jenis CD yang memiliki pit data lebih kecil, spiral data yang lebih rapat sehingga kapasitasnya sangat besar, bisa mencapai 4,7GB untuk sisi unggal dan berlapis tunggal.Laser optis yang digunakan adalah laser merah yang berukuran lebih kecil dari CD biasa. Kualitas yang dihasilkan juga lebih baik dari CD model lain.